Return of the EI:

Another extension considers multijet spaces
(usetul for injectivity & self-intersections of mops).
Here an r-fold k-jet bundle consists of
the following data:
Let
$$M^r = \underbrace{M \times \dots \times M}_{r}$$
 and
 $M^{(r)} := Corf_r(M) = \frac{1}{2} (X_{1/r}, X_r) \in M^r | X; \forall X; \forall i \neq j$
For $s : J^k(M,N) \rightarrow M$ source mop set
 $s^r : J^k(M,N) \stackrel{r}{\rightarrow} M^r$ and
 $J^k_r(M,N) := (s^r)^{-7} (M^{(r)}) \subset J^k(M,N)^r$
For $f : M \rightarrow N$ smooth $jrkf : M^{(r)} \rightarrow J^k_r(M,N)$
is given by $j_r^k f (X_{1/r}, X_r) = (j^k f (X_1), \dots, j^k f (X_r))$

ł

8. Theorem
M.N mfs,
$$S \subset J_r^k(M,N)$$
 submit. Let
 $J_s = \{f \in C^{\infty}(M,N) \mid j_r^k f \land S \}$. Then
 J_s is a residual subset of $C^{\infty}(M,N)$.

If S compact, then Js is open in
$$C^{\infty}(M,N)$$
.
Let us quickly consider the case $M < n$, where
we can now prove Whitney's immersion
and (easy) embedding theorems.
Recall, $f \in C^{\infty}(M,N)$ is an
- immersion if dfx injective for all xe M
- embedding if f immersion & homeon. in general
onto its image
 f immersion & injective M compact
 $e:q$.
 $RP^2 - R^2$
Roman surface, not immersion

$$\frac{g_{.} \text{ Lemma}}{f:M \rightarrow N \text{ imm.}} <=> j^{2}f(M) \cap US^{r} = \varphi$$

10. Lemma
$$\lim_{N \to \infty} (M, N) = \{ f \in C^{\infty}(M, N) \mid f \text{ immersions} \}$$

is open in $C^{\infty}(M, N) -$

M. Theorem (Whitney)

$$\left[\int n \ge 2m, \quad \text{then } \lim_{N \to \infty} (M, N) \quad \text{is an open dense} \\
 \text{ subset of } C^{\infty}(M, N) \quad (\text{in the Whitney } C^{\infty} = \text{topology}).$$

· Deuse:

For
$$0 \le r \le m$$
 we have
 $codim S^r = (m-r) \cdot (n-r) \qquad (Corank product formula)$
 $\ge 1 \qquad \ge 2m-r$
 $\ge 2m-r \ge m+1$

In these dimensions

$$j^{n}f \neq S^{r} \ll j^{n}f(M) \cap S^{r} = \phi$$

Lemma 9: $f \in lmm(M,N) \ll j^{r}f \neq S^{r}$ From
Then 4: $lmm(M,N)$ is a residual subset
of $C^{\infty}(M,N)$, hence dense.

Let M be compact. If
$$n \ge 2n+1$$
, then the set
of embeddings $M \rightarrow \mathbb{R}^n$ is residual in $\mathbb{C}^{\infty}(M,\mathbb{R}^n)$.

f:
$$M \rightarrow N$$
 injective if and only if
for $j_{2}^{\circ}f : M^{(2)} \rightarrow J_{2}^{\circ}(M,N) \circ (M \times N) \times (M \times N)$
 $\begin{cases} (x_{1},x_{2}) \in M^{2} | x_{1} + x_{2} \\ x_{1} + x_{2} \end{cases}$
and $S := (t^{2})^{-7} (\Delta_{N})$
 $\vdots \quad (M^{(2)}) \cap S = \phi$.
 $t^{2} : J_{2}^{\circ}(M,N) \rightarrow N^{2}$ is a submersion, so $S \subset J_{2}^{\circ}(M,N)$
is a submf. Moreover,
codim $S = \operatorname{codim} \Delta_{N} = n > 2m = \dim M^{(2)}$,
so that
 $j^{\circ}f \land S \ll j^{\circ}f(M^{(2)}) \cap S = \phi$.
Thus, f injective if and only if $j^{\circ}f \land S$
and the result follows by multijet transversality.
Remark: The set of embeddings $M \rightarrow \mathbb{R}^{M}$ is also open,

ht: The set of embeddings M-IRM is also op but this is a bit harder to prove...